Bio– and Multifunctional Polymer Architectures – Preparation, Analytical Methods and Applications
Preparation, Analytical Methods, and Applications
Gebonden Engels 2016 9781118158913Samenvatting
This reference/text addresses concepts and synthetic techniques for the preparation of polymers for state–of–the–art use in biomedicine, synthetic biology, and bionanotechnology.
Specificaties
Lezersrecensies
Inhoudsopgave
<p>Acknowledgments xiii</p>
<p>1 Introduction 1</p>
<p>1.1 What makes Polymers so Interesting? 1</p>
<p>1.2 Macromolecular Engineering and Nanostructure Formation 4</p>
<p>1.3 Specific Needs in Bionanotechnology and Biomedicine 5</p>
<p>Reference 6</p>
<p>2 Terminology 7</p>
<p>2.1 Polymer Architectures 7</p>
<p>2.2 Multifunctionality 11</p>
<p>2.3 Bioconjugates 12</p>
<p>2.4 Biocompatibility 12</p>
<p>2.5 Biodegradation 14</p>
<p>2.6 Bioactivity 14</p>
<p>2.7 Multivalency 15</p>
<p>2.8 Bionanotechnology 17</p>
<p>References 18</p>
<p>3 Preparation Methods and Tools 19</p>
<p>3.1 General Aspects of Polymer Synthesis 19</p>
<p>3.1.1 Chain Growth Polymerizations 20</p>
<p>3.1.2 Step Growth Polymerizations 23</p>
<p>3.1.3 Modification of Polymers 25</p>
<p>3.2 Controlled Polymer Synthesis 25</p>
<p>3.2.1 Anionic Polymerization 26</p>
<p>3.2.2 Cationic Polymerization 30</p>
<p>3.2.3 Controlled Radical Polymerization 34</p>
<p>3.2.4 Metal Catalyzed Polymerization 37</p>
<p>3.2.5 Chain Growth Condensation Polymerization 41</p>
<p>3.3 Effective Polymer Analogous Reactions 43</p>
<p>3.4 Pegylation 47</p>
<p>3.5 Bioconjugation 51</p>
<p>3.5.1 Polynucleotide Conjugates 53</p>
<p>3.5.2 Protein Conjugates 55</p>
<p>3.5.3 Polysaccharide Conjugates 57</p>
<p>3.6 Enzymatic Polymer Synthesis 59</p>
<p>3.7 Solid Phase Synthesis and Biotechnological Approaches 63</p>
<p>3.7.1 Solid Phase Synthesis 63</p>
<p>3.7.2 Biotechnology Approaches in the Synthesis of Biopolymers 75</p>
<p>3.8 Hydrogels and Hydrogel Scaffolds 81</p>
<p>3.8.1 Hydrogels 81</p>
<p>3.8.2 Hydrogels as Scaffold Materials 84</p>
<p>3.9 Surface Modification and Film Preparation 92</p>
<p>3.9.1 Self Assembled Monolayers 93</p>
<p>3.9.2 Langmuir Blodgett Films 95</p>
<p>3.9.3 Layer by Layer Deposition 96</p>
<p>3.9.4 Immobilization by Chemical Binding to Substrates 97</p>
<p>3.9.5 Low Pressure Plasma 99</p>
<p>3.9.6 Electron Beam Treatment 101</p>
<p>3.10 Microengineering of Polymers and Polymeric Surfaces 102</p>
<p>References 107</p>
<p>4 Analytical Methods 113</p>
<p>4.1 Molecular Structure and Molar Mass Determination of Polymers and Biohybrids 113</p>
<p>4.1.1 Structural Characterization 114</p>
<p>4.1.2 Determination of Molar Mass and Molar Mass Distribution 132</p>
<p>4.2 Characterization of Aggregates and Assemblies 137</p>
<p>4.2.1 Dynamic Light Scattering 138</p>
<p>4.2.2 Pulsed Field Gradient and Electrophoretic Nuclear Magnetic Resonance 139</p>
<p>4.2.3 Field Flow Fractionation 142</p>
<p>4.2.4 UV Vis Spectroscopy and Fluorescence Spectroscopy 144</p>
<p>4.2.5 Electron Microscopy 145</p>
<p>4.3 Characterization of Hydrogel Networks 147</p>
<p>4.3.1 Network Structure of Hydrogels 148</p>
<p>4.3.2 Swelling Degree 148</p>
<p>4.3.3 Mechanical Properties 150</p>
<p>4.3.4 Deriving Microscopic Network Parameters from Macroscopic Hydrogel Properties 153</p>
<p>4.4 Surface Characterization 154</p>
<p>4.4.1 X Ray Photoelectron Spectroscopy 154</p>
<p>4.4.2 Contact Angle Measurements by Axisymmetric Drop Shape Analysis 157</p>
<p>4.4.3 Electrokinetic Measurements 158</p>
<p>4.4.4 Spectroscopic Ellipsometry 159</p>
<p>4.4.5 Quartz Crystal Microbalance with Dissipation Monitoring 160</p>
<p>4.4.6 Surface Plasmon Resonance 161</p>
<p>4.4.7 Scanning Force Techniques 162</p>
<p>4.4.8 Environmental Scanning Electron Microscopy 164</p>
<p>4.5 Biophysical Characterization and Biocompatibility 166</p>
<p>4.5.1 Biophysical Characterization 167</p>
<p>4.5.2 Biocompatibility 175</p>
<p>References 183</p>
<p>5 Multifunctional Polymer Architectures 187</p>
<p>5.1 Multifunctional (Block) Copolymers 187</p>
<p>5.1.1 Multifunctionality through Copolymerization 187</p>
<p>5.1.2 Multifunctionality by Polymer Analogous Reactions 189</p>
<p>5.1.3 Spatially Defined Multifunctionality by Phase Separation and Self Assembly of Segmented Copolymers 190</p>
<p>5.2 Dendritic Polymers 196</p>
<p>5.2.1 Synthesis of Dendrimers and Hyperbranched Polymers 198</p>
<p>5.2.2 Properties and Applications 200</p>
<p>5.3 Glycopolymers 203</p>
<p>5.3.1 Linear Glycopolymers 205</p>
<p>5.3.2 Globular Glycomacromolecules 207</p>
<p>5.4 Peptide Based Structures 212</p>
<p>5.4.1 Hierarchical Self Assembly of Peptide Molecules 214</p>
<p>5.4.2 General Design Concepts for Peptide Based Structural Materials 215</p>
<p>5.4.3 Noncanonical Amino Acids in Peptide/Protein Engineering 217</p>
<p>5.4.4 Peptide Based Materials Inspired by Naturally Occurring Structural Proteins 217</p>
<p>5.4.5 Polypeptide Materials Based on other Naturally Occurring or De Novo Designed Self Assembling Domains such as Coiled Coils 221</p>
<p>5.4.6 Self Assembly of Short Peptide Derivates and Peptide Based Amphiphilic Molecules 222</p>
<p>5.5 Biohybrid Hydrogels 224</p>
<p>5.5.1 Composition Basic Principles and Formation of Biohybrids 225</p>
<p>5.5.2 Polynucleotide Biohybrids 228</p>
<p>5.5.3 Polypeptide or Protein Biohybrids 231</p>
<p>5.5.4 Polysaccharide Biohybrids 232</p>
<p>References 235</p>
<p>6 Functional Materials and Applied Systems 241</p>
<p>6.1 Organic Nanoparticles and Aggregates for Drug and Gene Delivery 241</p>
<p>6.1.1 Polymeric Micelles Polymersomes and Nanocapsules 241</p>
<p>6.1.2 Polymeric Beads and Micro/Nanogels Based on Dendritic Structures 254</p>
<p>6.1.3 Polyplexes for Gene Delivery 263</p>
<p>6.2 Polymer Therapeutics and Targeting Approaches 264</p>
<p>6.2.1 Current Status of Polymer Therapeutics 264</p>
<p>6.2.2 Implications and Rationale for Effective Delivery Systems 266</p>
<p>6.2.3 Cellular Uptake and Targeting 267</p>
<p>6.3 Multi and Polyvalent Polymeric Architectures 271</p>
<p>6.3.1 Polyvalent Interactions on Biological Interfaces 272</p>
<p>6.3.2 Prospects for Multivalent Drugs 277</p>
<p>6.4 Bioresponsive Networks 280</p>
<p>6.4.1 Active Principle 280</p>
<p>6.4.2 Homeostatic Regulation of Blood Coagulation 281</p>
<p>6.4.3 Insulin Release in Response to Glucose Concentration 282</p>
<p>6.4.4 Urate Responsive Release of Urate Oxidase 283</p>
<p>6.4.5 Cell Responsive Degradation of Hydrogel Networks 284</p>
<p>6.5 Biofunctional Surfaces 284</p>
<p>6.5.1 Concepts and Aims of Biofunctional Material Surfaces 284</p>
<p>6.5.2 Biofunctional Surfaces for the Prevention of Biofouling 287</p>
<p>6.5.3 Anticoagulant Coatings for Blood Contacting Devices 292</p>
<p>References 295</p>
<p>Abbreviations 303</p>
<p>Index 309</p>
Rubrieken
- advisering
- algemeen management
- coaching en trainen
- communicatie en media
- economie
- financieel management
- inkoop en logistiek
- internet en social media
- it-management / ict
- juridisch
- leiderschap
- marketing
- mens en maatschappij
- non-profit
- ondernemen
- organisatiekunde
- personal finance
- personeelsmanagement
- persoonlijke effectiviteit
- projectmanagement
- psychologie
- reclame en verkoop
- strategisch management
- verandermanagement
- werk en loopbaan