Part I Theory.- 1 Introduction.- References . - 2 The Symmetry Groups in Three-Dimensional Space .- 2.1 Classification of the Symmetry Groups. -2.2 Space (Triperiodic) Symmetry Groups of Bulk Crystals . - 2.3 Bulk Crystal Structures. - 2.4 Diperiodic (Layer) Symmetry Groups of Nanolayers .- 2.5 Line and Rod Symmetry Groups of Stereo-Regular Polymers and Monoperiodic Nanostructures . - 2.6 Symmetry of Crystalline Orbitals in Periodic Systems: Space, Layer and Line Groups. - 2.7 Phonon Symmetry in Periodic systems.- 2.7.1 Phonon Symmetry Analysis.- 2.7.2 Mechanical Representation of three-periodic, layer and line groups.- 2.7.3 Infrared and Raman Spectra Selection Rules.- 2.7.4 Phonon symmetry in Layer groups.- 2.7.5 Phonon Symmetry in Line Groups.- 2.7.6 Nanotubes and Nanowires: Infrared and Raman Active modes. - References . - 3 First-Principles Simulations of Bulk Crystal and Nanolayer Properties . - 3.1 Basis Sets and Pseudopotentials in the Crystalline Electronic Structure Calculations. - 3.2 LCAO Hartree-Fock Method for Periodic Systems . - 3.3 Foundations of Density Functional Theory . - 3.4 LCAO and Density Functional Tight Binding (DFTB) Methods for Periodic Systems . - 3.5 Plane Wave Hartree-Fock and DFT Methods for Periodic Systems .- 3.6 Molecular Dynamics Approach .- 3.7 First-Principles Simulation of Bulk Crystal (3D) Properties . - 3.7.1 One-Electron Properties: Band Structure, Density of States . - 3.7.2 Equilibrium Structure, Bulk Modulus, Formation and Surface Energy .- 3.7.3 Phonon Frequencies and Relative Phase Stability Calculations (bulk crystals) .- 3.7.4 Phonon Frequencies and Relative Phase Stability for Nanolayers, Nanotubes and Nanowires.- 3.7.5 Phonons in Carbon Nanotubes.- 3.8 Nanostructure Formation, Surface and Strain Energy . - References .- Part II Applications.- 4. Thermodynamic Properties of Bulk Crystals and Nanostructures.- 4.1 Thermodynamic Properties of Three-periodic systems in Harmonic Approximation.- 4.2 Thermodynamic properties of Nanolayers.- 4.3 Thermodynamic Properties of Nanotubes and their Diameter Dependence.- 4.4 Thermodynamic Properties of Nanowires and Nanorods.-5. Group IV Semiconductors . - 5.1 Silicon and Germanium Bulk and Nanolayers . - 5.2 Silicon and Germanium Nanotubes . - 5.3 Silicon and Germanium Nanowires . - 5.4 Silicon Carbide and Germanium Silicide Bulk and Nanolayers . - 5.5 Silicon Carbide and Germanium Silicide Nanotubes . - 5.6 Silicon Carbide and Germanium Silicide Nanowires . - References . - 6. Nitrides of Boron and Group III Metals .- 6.1 Boron Nitride Bulk and Nanolayers . -6.2 Boron Nitride Nanotubes . - 6.3 Boron Nitride Nanoscrolls and Nanowires. - 6.4 Group III Metal Nitride Bulk and Nanolayers . -6.5 Group III Metal Nitride Nanotubes . - 6.6 Group III Metal Nitride Nanowires .- References . - 7. Binary Oxides of Transition Metals. - 7.1 Zinc Oxide .- 7.2 Titanium Oxide . - 7.3 ZrO2 and HfO2 . - 7.4 V2O5.- 7.4.1 Bulk and nanolayers.- 7.4.2 Symmetry of Rolled-up V2O5 Nanotubes.- 7.4.2Calculations of V2O5 -based Nanotubes.- References . - 8. Ternary Oxides . - 8.1 SrZrO3 .- 8.2 BaTiO3.- References .- 9. Sulfides .- 9.1 MoS2 and WS2 .- 9.2 TiS2 and ZrS2 . -9.3 ZnS Facetted and Rolled up Nanostructures.- 9.4 Cd S Facetted and Rolled up Nanostructures.- References . - Appendix A: Space Groups .- Appendix B: Layer Groups as Subgroups of Space Groups. - Appendix C: Line Groups . - Appendix D: Rod Groups as Subgroups of Space Groups . - Appendix E Symmetry Role in Nanostructures Calculations.- Index<p></p>