Lineare Algebra und Analytische Geometrie II

Noten zu einer Vorlesung mit historischen Anmerkungen von Erhard Scholz

Gebonden Duits 1985 1985e druk 9783528085629
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Die Jordanzerlegung in halbeinfachen und nilpotenten Anteil lieferte uns die charakteristische Abbildung n M{n x n,K) ~ K , x die jeder Matrix A die Koeffizienten (a , ••• ,a ) des charakteristischen 1 n Polynoms von A zuordnet. Mit Hilfe dieser Abbildung hatten wir das Klassi­ fikationsproblem in zwei Teilprobleme A und B aufgespalten. Problem A Hier bestand das Problem in der Klassifikation der halbeinfachen Matrizen bis auf Konjugation. Das Hauptresultat war der Satz 11.45*. Die Konjugations­ klassen halbeinfacher Matrizen entsprechen bijektiv den Punkten des affinen Raumes ~. Eine Einteilung der halbeinfachen Konjugationsklassen in Typen ergibt sich in naturlicher Weise durch die algebraischen Multiplizitaten der Eigenwerte Ai • Dabei entsprechen die regularen Elemente, d.h. die­ n jenigen mit m = 1 , gerade den Punkten von K 1m Komplement der Disk- i n minantenmenge D cK , und den verschiedenen Typen von singul4ren Elementen entsprechen, wie wir an Beispielen gesehen haben, verschiedene Strata (d.h. Schichten) von D, welche man analytisch-geometrisch charakterisieren kann. 1m Fall K = Roder K = ~ sehen wir also, daB die Konjugationsklassen der halbeinfachen Anteile eine kontinuierliche Mannigfaltigkeit bilden, namlich einen affinen Raum Kn, und daB die weitere Typeneinteilung dieser Konju­ gationsklassen mit der analytischen Geometrie der Diskriminantenmengen n D c. K zusammenhangt.

Specificaties

ISBN13:9783528085629
Taal:Duits
Bindwijze:gebonden
Aantal pagina's:534
Druk:1985

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

Inhalt: Normalformen: Überblick über die Klassifikation - Die Klassifikation nilpotenter Endomorphismen - Eigenwerte, Eigenräume, Jordan-Zerlegung - Die Jordan-Normalform - Elementarteiler - Die Klassifikation bis auf Konjugation - 1. Beispiel: GL (2,IR) - 2. Beispiel: GL (3,IR) - Anhang: Die schwingende Saite - Historische Bemerkungen zur Untersuchung der Struktur linearer Transformationen/ Vektorräume mit Hermiteschen Formen und ihre Endomorphismen: Sesquilinearformen - Selbstadjungierte und unitäre Endomorphismen- Orthogonalisierung - Isotropie - Klassifikation hermitescher und antihermitescher Formen - Euklidische und unitäre Vektorräume - Die Klassischen Gruppen - Bemerkungen zur Geschichte der Geometrie der klassischen Gruppen.

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Lineare Algebra und Analytische Geometrie II