Functional Analysis
Vol. I
Gebonden Engels 1996 1996e druk 9783764353445Samenvatting
"Functional Analysis" is a comprehensive, 2-volume treatment of a subject lying at the core of modern analysis and mathematical physics. The first volume reviews basic concepts such as the measure, the integral, Banach spaces, bounded operators and generalized functions. Volume II moves on to more advanced topics including unbounded operators, spectral decomposition, expansion in generalized eigenvectors, rigged spaces, and partial differential operators. This text provides students of mathematics and physics with a clear introduction into the above concepts, with the theory well illustrated by a wealth of examples. Researchers will appreciate it as a useful reference manual.
Specificaties
Lezersrecensies
Inhoudsopgave
\tilde G
$$).- 7.5 The Space C?($$
\tilde G
$$).- 8 Spaces of Summable Functions. Spaces Lp.- 8.1 Hölder and Minkowski Inequalities. Definition of the Spaces Lp.- 8.2 Everywhere Dense Sets in Lp. Separability Conditions.- 8.3 Different Types of Convergence in Lp.- 8.4 The Space lp.- 8.5 The Space L2(R,d?).- 8.6 Essentially Bounded Functions. The Space L?(R,d?).- 8.7 The Space l?.- 8.8 The Sobolev Spaces.- 7 Linear Continuous Functional and Dual Spaces.- 1 Theorem on an Almost Orthogonal Vector. Finite Dimensional Spaces.- 2 Linear Continuous Functional and Their Simple Properties. Dual Space.- 3 Extension of Linear Continuous Functionals.- 3.1 Extension by Continuity.- 3.2 Extension of a Functional Defined on a Subspace.- 4 Corollaries of the Hahn-Banach Theorem.- 5 General Form of Linear Continuous Functionals in Some Banach Spaces.- 5.1 The Concept of a Schauder Basis.- 5.2 The Space Dual to lp (1 < p < ?).- 5.3 The Space Dual to l1.- 5.4 The Space Dual to l?. Banach Limit.- 5.5 The Space Dual to LP(R, d?) (1 < p < ?).- 5.6 The Spaces Dual to L1(R, d?) and L?(R, d?).- 5.7 The Space Dual to C(Q).- 6 Embedding of a Linear Normed Space in the Second Dual Space. Reflexive Spaces.- 7 Banach-Steinhaus Theorem. Weak Convergence.- 7.1 Banach-Steinhaus Theorem.- 7.2 Weak Convergence of Linear Continuous Functional.- 7.3Weak convergence in (C([a, b]))?. The Helly Theorems.- 7.4 Weak Convergence in a Linear Normed Space.- 8 Tikhonov Product. Weak Topology in the Dual Space.- 8.1 Tikhonov Product of Topological Spaces.- 8.2 Weak Topology in the Dual Space.- 9 Orthogonality and Orthogonal Projections in Hilbert Spaces. General Form of a Linear Continuous Functional.- 9.1 Orthogonality. Theorem on the Projection of a Vector onto a Subspace.- 9.2 Orthogonal Sums of Subspaces.- 9.3 Linear Continuous Functionals in Hilbert Spaces.- 10 Orthonormal Systems of Vectors and Orthonormal Bases in Hilbert Spaces.- 10.1 Orthonormal Systems of Vectors. The Bessel Inequality.- 10.2 Orthonormal Bases in H. The Parseval Equality.- 10.3 Orthogonalization of a System of Vectors.- 10.4 Examples of Orthogonal Polynomials.- 10.5 Orthonormal Systems of Vectors of Arbitrary Cardinality.- 8 Linear Continuous Operators.- 1 Linear Operators in Normed Spaces.- 2 The Space of Linear Continuous Operators.- 3 Product of Operators. The Inverse Operator.- 3.1 Product of Operators.- 3.2 Normed Algebras.- 3.3 The Inverse Operator.- 4 The Adjoint Operator.- 5 Linear Operators in Hilbert Spaces.- 5.1 Bilinear Forms.- 5.2 Selfadjoint Operators.- 5.3 Nonnegative Operators.- 5.4 Projection Operators.- 5.5 Normal Operators.- 5.6 Unitary and Isometric Operators.- 6 Matrix Representation of Operators in Hilbert Spaces.- 6.1 Linear Operators in a Separable Space.- 6.2 Selfadjoint Operators.- 6.3 Nonnegative Operators.- 6.4 Orthoprojectors.- 6.5 Isometric Operators.- 6.6 Jacobian Matrices.- 7 Hilbert-Schmidt Operators.- 7.1 Absolute Norm.- 7.2 Integral Hilbert-Schmidt Operators.- 8 Spectrum and Resolvent of a Linear Continuous Operator.- 9 Compact Operators. Equations with Compact Operators.- 1 Definition and Properties of Compact Operators.- 2 Riesz-Schauder Theory of Solvability of Equations with Compact Operators.- 3 Solvability of Fredholm Integral Equations.- 3.1 Some Classes of Integral Operators.- 3.2 Solvability of Fredholm Integral Equations of the Second Kind.- 3.3 Integral Equations with Degenerate Kernels.- 4 Spectrum of a Compact Operator.- 5 Spectral Radius of an Operator.- 5.1 Power Series with Operator Coefficients.- 5.2 Spectral Radius of a Linear Continuous Operator.- 5.3 Method of Successive Approximations.- 6 Solution of Integral Equations of the Second Kind by the Method of Successive Approximations.- 10 Spectral Decomposition of Compact Selfadjoint Operators. Analytic Functions of Operators.- 1 Spectral Decomposition of a Compact Selfadjoint Operator.- 1.1 One Property of Hermitian Bilinear Forms.- 1.2 Theorem on Existence of an Eigenvector for a Selfadjoint Compact Operator.- 1.3 Spectral Theorem for a Compact Selfadjoint Operator.- 2 Integral Operators with Hermitian Kernels.- 2.1 Spectral Decomposition of a Selfadjoint Integral Operator.- 2.2 Bilinear Decomposition of Hermitian Kernels.- 2.3 Hilbert-Schmidt Theorem.- 2.4 Integral Operators with Positive Definite Kernels. The Mercer Theorem.- 3 The Bochner Integral.- 4 Analytic Functions of Operators.- 11 Elements of the Theory of Generalized Functions.- 1 Test and Generalized Functions.- 1.1 Space of Test Functions D (?N).- 1.2 Operators of Averaging.- 1.3 Decomposition of the Unit.- 1.4 Space of Generalized Functions D?(?N).- 1.5 Order of a Generalized Function.- 1.6 Support of a Generalized Function.- 1.7 Regularization.- 2 Operations with Generalized Functions.- 2.1 Operations in D?(?N). Definitions.- 2.2 Multiplication of Generalized Functions by a Smooth Function.- 2.3 Change of Variables in Generalized Functions.- 2.4 Differentiation of Generalized Functions.- 3 Tempered Generalized Functions. Fourier Transformation.- 3.1 The Space S(?N) of Test (Rapidly Decreasing) Functions.- 3.2 The Space S? (?N) of (Tempered) Generalized Functions.- 3.3 Fourier Transformation.- Bibliographical Notes.- References.
Rubrieken
- advisering
- algemeen management
- coaching en trainen
- communicatie en media
- economie
- financieel management
- inkoop en logistiek
- internet en social media
- it-management / ict
- juridisch
- leiderschap
- marketing
- mens en maatschappij
- non-profit
- ondernemen
- organisatiekunde
- personal finance
- personeelsmanagement
- persoonlijke effectiviteit
- projectmanagement
- psychologie
- reclame en verkoop
- strategisch management
- verandermanagement
- werk en loopbaan