<p>Preface.- Introduction.- 1. Approaches to Choice of Model Systems for Microscopic Studies.- 1.1. Colour and Absorbance in Analysis.- 1.1.1. Usual Microscopy and Stereomicroscopy.- 1.2.1. Auto fluorescence of Secretory Components.- 1.2.2. Special Fluorescent Probes or Markers.- 1.2.3. Fluorescence-related Technique.- 1.2.3.1. Luminescence Microscopy.- 1.2.3.2. Microspectrofluorimetry.- 1.2.3.3. Confocal Microscopy.- 1.2.3.4. Images and the Fluorescence Spectra of Cells in Cytodiagnostics.- 1.3. Cellular Observation of Secretory Process.- 1.3.1. Secretion Transport and Excretion.- 1.3.2. Reactions of Models – Acceptors Sensitive to Secretory Products.- 2. Intact Secretory Cells as Models – Donors of Secretions.- 2.1. Intracellular Secretion.- 2.1.1. Models of Secretion into Vacuole.- 2.1.1.1. Models with Pigments in Vacuoles.- 2.1.1.2. Models for Analysis of Alkaloids’ Accumulation in Isolated Vacuole.- 2.1. Intratissue Secretory Systems.- 2.2.1. Laticifers as Models.- 2.2.2. Idioblasts.- 2.3. External Secretion.- 2.3.1. Secretion into Free Space.- 2.3.2. Models of External Secretions.- 2.3.2.1. Single Cell-Models.- 2.3.2.2. Multicellular Models.- 3. Models – Acceptors of Secretions and their Reactions on Exometabolites.- 3.1. Biosensors and their Sensitive Reactions.- 3.1.1. Exometabolites as Chemosignals.- 3.1.1.1. Amine-Containing Compounds in Secretions.- 3.1.1.2. Specific Compounds Excreted by Plants.- 3.1.1.3. Reactive Oxygen Species.- 3.1.2. Sensory Systems in Models-Acceptors.- 3.2. Sensitive-Reactions of Models to Exometabolites.- 3.2.1. Microspores as Biosensors.- 3.2.1.1. Effects of Complex Excretions.- 3.2.1.2. Effects of Amine-containing Compounds.- 3.2.1.3. Effects of Alkaloids.- 3.2.1.4. Effects of Monoterpenes and Sesquiterpene Lactones.- 3.2.1.5. Effects of Proteins.- 3.2.1.6. Effects of Natural Oxidants and Antioxidants.- 3.2.1.7. Effects of Exometabolites on the Secretions from Microspores.- 3.2.2. Multicellular Biosensors.- 3.2.2.1. Changes in Fluorescence.- 3.2.2.2. Secretion from Cells.- 3.2.2.3. The Cholinesterase Activity as Indicator of Sensitivity to Excretory Products.- 4. Modeling of Cell-Cell Contacts.- 4.1. Modeling of Cell-Cell Contacts based on Microscopic Observation.- 4.1.1. Pollen-Pistil Interactions.- 4.1.1.1. Visualization of Pistil Stigma Reaction on Pollination.- 4.1.1.2. Individual Components in the Pollen-Pistil Contact. 4.1.2. Pollen-Pollen Interactions.- 4.1.2.1. LSCM Images of Fluorescence in Pollen-Pollen Interactions.- 4.1.2.2. The Germination Reactions in Pollen Mixtures.- 4.1.3. Direct Contacts at Plant-Animal or Plant-Microorganism Interactions.- 4.1.3.1. Plant-Insect Contacts.- 4.1.3.2. Plant-Worm contacts.- 4.1.3.3. Relations between Water-Grown Plants and Animals.- 4.1.3.4. Plant-Microorganism Contacts.- 4.2. Models to Study Pollen Allelopathy.- 4.2.1. Modeling of Interaction between Pollen-Donors and Pollen-Acceptors In Vivo and In Vitro.- 4.2.2. Modelling with Pollen Excretions.- 4.3. Modelling with Individual Components of Excretions as Markers and Dyes.- 4.3.1. Coloured and Fluorescing Compounds.- 4.3.2. Fluorescing Colorless Compounds.- 5. Application of Models in Pharmacology, Medicine and Ecology.- 5.1. Unicellular Models in Analysis of Effects Pharmaceuticals and Allelochemicals.- 5.1.1. Testing on Microspores.- 5.1.2. Staining of Cells with Extracts.- 5.2. Cellular Targets and Mechanisms of Action of Drugs and Allelochemicals.- 5.2.1. The Surface Targets.- 5.2.1.1. Reception and Ion Channels.- 5.2.1.2. Cholinestease as Sensor.- 5.2.1.3. Redox Reactions.- 5.2.2. Targets within Cell-Model.- 5.2.2.1. DNA-containing Organelles.- 5.2.2.2. Contractile Proteins.- 5.3. Application of Models in Environmental Monitoring.- Conclusion.- References.- Subject Index.- Latin Index.</p>