, ,

Handbook of Medical Image Computing and Computer Assisted Intervention

Gebonden Engels 2019 9780128161760
Verwachte levertijd ongeveer 9 werkdagen
Gratis verzonden

Samenvatting

Handbook of Medical Image Computing and Computer Assisted Intervention presents important advanced methods and state-of-the art research in medical image computing and computer assisted intervention, providing a comprehensive reference on current technical approaches and solutions, while also offering proven algorithms for a variety of essential medical imaging applications. This book is written primarily for university researchers, graduate students and professional practitioners (assuming an elementary level of linear algebra, probability and statistics, and signal processing) working on medical image computing and computer assisted intervention.

Specificaties

ISBN13:9780128161760
Taal:Engels
Bindwijze:Gebonden

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>1. Image synthesis and superresolution in medical imaging <br>Jerry L. Prince, Aaron Carass, Can Zhao, Blake E. Dewey, Snehashis Roy, Dzung L. Pham<br>2. Machine learning for image reconstruction<br>Kerstin Hammernik, Florian Knoll<br>3. Liver lesion detection in CT using deep learning techniques <br>Avi Ben-Cohen, Hayit Greenspan<br>4. CAD in lung<br>Kensaku Mori<br>5. Text mining and deep learning for disease classification<br>Yifan Peng, Zizhao Zhang, Xiaosong Wang, Lin Yang, Le Lu<br>6. Multiatlas segmentation<br>Bennett A. Landman, Ilwoo Lyu, Yuankai Huo, Andrew J. Asman<br>7. Segmentation using adversarial image-to-image networks <br>Dong Yang, Tao Xiong, Daguang Xu, S. Kevin Zhou<br>8. Multimodal medical volumes translation and segmentation with generative adversarial network <br>Zizhao Zhang, Lin Yang, Yefeng Zheng<br>9. Landmark detection and multiorgan segmentation: Representations and supervised approaches <br>S. Kevin Zhou, Zhoubing Xu<br>10. Deep multilevel contextual networks for biomedical image segmentation <br>Hao Chen, Qi Dou, Xiaojuan Qi, Jie-Zhi Cheng, Pheng-Ann Heng<br>11. LOGISMOS-JEI: Segmentation using optimal graph search and just-enough interaction <br>Honghai Zhang, Kyungmoo Lee, Zhi Chen, Satyananda Kashyap, Milan Sonka<br>12. Deformable models, sparsity and learning-based segmentation for cardiac MRI based analytics<br>Dimitris N. Metaxas, Zhennan Yan<br>13. Image registration with sliding motion <br>Mattias P. Heinrich, Bartłomiej W. Papiez˙<br>14. Image registration using machine and deep learning <br>Xiaohuan Cao, Jingfan Fan, Pei Dong, Sahar Ahmad, Pew-Thian Yap, Dinggang Shen<br>15. Imaging biomarkers in Alzheimer’s disease <br>Carole H. Sudre, M. Jorge Cardoso, Marc Modat, Sebastien Ourselin<br>16. Machine learning based imaging biomarkers in large scale population studies: A neuroimaging perspective <br>Guray Erus, Mohamad Habes, Christos Davatzikos<br>17. Imaging biomarkers for cardiovascular diseases <br>Avan Suinesiaputra, Kathleen Gilbert, Beau Pontre, Alistair A. Young<br>18. Radiomics <br>Martijn P.A. Starmans, Sebastian R. van der Voort, Jose M. Castillo Tovar, Jifke F. Veenland, Stefan Klein, Wiro J. Niessen<br>19. Random forests in medical image computing <br>Ender Konukoglu, Ben Glocker<br>20. Convolutional neural networks <br>Jonas Teuwen, Nikita Moriakov<br>21. Deep learning: RNNs and LSTM <br>Robert DiPietro, Gregory D. Hager<br>22. Deep multiple instance learning for digital histopathology <br>Maximilian Ilse, Jakub M. Tomczak, Max Welling<br>23. Deep learning: Generative adversarial networks and adversarial methods <br>Jelmer M. Wolterink, Konstantinos Kamnitsas, Christian Ledig, Ivana Išgum<br>24. Linear statistical shape models and landmark location <br>T.F. Cootes<br>25. Computer-integrated interventional medicine: A 30 year perspective <br>Russell H. Taylor<br>26. Technology and applications in interventional imaging: 2D X-ray radiography/fluoroscopy and 3D cone-beam CT<br>Sebastian Schafer, Jeffrey H. Siewerdsen<br>27. Interventional imaging: MR <br>Eva Rothgang, William S. Anderson, Elodie Breton, Afshin Gangi, Julien Garnon, Bennet Hensen, Brendan F. Judy, Urte Kägebein, Frank K. Wacker<br>28. Interventional imaging: Ultrasound <br>Ilker Hacihaliloglu, Elvis C.S. Chen, Parvin Mousavi, Purang Abolmaesumi, Emad Boctor, Cristian A. Linte<br>29. Interventional imaging: Vision <br>Stefanie Speidel, Sebastian Bodenstedt, Francisco Vasconcelos, Danail Stoyanov<br>30. Interventional imaging: Biophotonics <br>Daniel S. Elson<br>31. External tracking devices and tracked tool calibration <br>Elvis C.S. Chen, Andras Lasso, Gabor Fichtinger<br>32. Image-based surgery planning <br>Caroline Essert, Leo Joskowicz<br>33. Human–machine interfaces for medical imaging and clinical interventions <br>Roy Eagleson, Sandrine de Ribaupierre<br>34. Robotic interventions <br>Sang-Eun Song<br>35. System integration <br>Andras Lasso, Peter Kazanzides<br>36. Clinical translation <br>Aaron Fenster<br>37. Interventional procedures training<br>Tamas Ungi, Matthew Holden, Boris Zevin, Gabor Fichtinger<br>38. Surgical data science <br>Gregory D. Hager, Lena Maier-Hein, S. Swaroop Vedula<br>39. Computational biomechanics for medical image analysis <br>Adam Wittek, Karol Miller<br>40. Challenges in Computer Assisted Interventions <br>P. Stefan, J. Traub, C. Hennersperger, M. Esposito, N. Navab</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Handbook of Medical Image Computing and Computer Assisted Intervention