<p>Foreword</p><p>Preface</p><p>1. Complexity of the Geological Framework and Use of Mathematics</p><p>1.1 Use of Mathematics in Geology</p><p>1.2 Geological Data, Concepts and Maps</p><p>1.2.1 Map-Making </p><p>1.2.2 Geological Cross-Sections</p><p>1.2.3 Scientific Method in the Geosciences</p><p>1.2.4 Quality of Predictions</p><p>1.3 Use of Curves</p><p>1.3.1 Trend-Lines</p><p>1.3.2 Elementary Differential Calculus</p><p>1.3.3 Graphical Curve-Fitting</p><p>1.4 Use of Surfaces</p><p>1.4.1 Automated 3-Dimensional Map-Making: Central Baffin Example</p><p>1.4.2 Folds and Faults</p><p>1.5 Image Analysis</p><p>1.5.1 Geometrical Covariance, Intercept and Rose Diagram</p><p>1.5.2 Minkowski Operations: Bathurst Acidic Volcanics Example</p><p>1.5.3 Boundaries and Edge Effects</p><p> </p><p>2. Probability and Statistics</p><p>2.1 History of Statistics</p><p>2.1.1 Emergence of Mathematical Statistics</p><p>2.1.2 Spatial Statistics</p><p>2.2 Probability Calculus and Discrete Frequency Distributions</p><p>2.2.1 Conditional Probability and Bayes’ Theorem</p><p>2.2.2 Probability Generating Functions</p><p>2.2.3 Binomial and Poisson Distributions</p><p>2.2.4 Other Discrete Frequency Distributions</p><p>2.2.5 Oficina Formation Example</p><p>2.3 Continuous Frequency Distributions and Statistical Inference</p><p>2.3.1 Central-Limit Theorem </p><p>2.3.2 Frequency Distributions Derived from the Normal</p><p>2.3.3 Significance Tests and 95%-Confidence Intervals</p><p>2.3.4 Sum of Two Random Variables</p><p>2.4 Applications of Statistical Analysis</p><p>2.4.1 Statistical Inference: Grenville Potassium/Argon Ages Example</p><p>2.4.2 Q-Q Plots: Normal Distribution Example</p><p>2.5 Sampling</p><p>2.5.1 Pulacayo Mine Example </p><p>2.5.2 Virginia Mine Example</p><p> </p><p>3. Maximum Likelihood, Lognormality and Compound Distributions </p><p>3.1 Maximum Likelihood Method with Applications to the Geologic Timescale</p><p>3.1.1 Weighting Function Defined for the Inconsistent Dates Model</p><p>3.1.2 Log-Likelihood and Weighting Functions</p><p>3.1.3 Caerfai-St David’s Boundary Example </p><p>3.1.4 The Chronogram Interpreted as an Inverted Log-Likelihood Function</p><p>3.1.5 Computer Simulation Experiments </p><p>3.1.6 Mesozoic Timescale Example </p><p>3.2 Lognormality and Mixtures of Frequency Distributions</p><p>3.2.1 Estimation of Lognormal Parameters</p><p>3.2.2 Muskox Layered Intrusion Example </p><p>3.2.3 Three-Parameter Lognormal Distribution</p><p>3.2.4 Graphical Method of Reconstructing the Generating Process</p><p>3.3 Compound Random Variables</p><p>3.3.1 Compound Frequency Distributions and their Moments</p><p>3.3.2 Exploration Strategy Example</p><p> </p><p>4. Correlation, Method of Least Squares, Linear Regression and the General Linear Model</p><p>4.1 Correlation and Functional Relationship</p><p>4.2 Linear Regression</p><p>4.2.1 Degree of Fit and 95% - Confidence Belts </p><p>4.2.2 Mineral Resource Estimation Example</p><p>4.2.3 Elementary Statistics of the Mosaic Model</p><p>4.3 General Model of Least Squares</p><p>4.3.1 Abitibi Copper Deposits Example</p><p>4.3.2 Forward Selection and Stepwise Regression Applied to Abitibi Copper</p><p>4.4 Abitibi Copper Hindsight Study</p><p>4.4.1 Incorporation of Recent Discoveries</p><p>4.4.2 Comparison of Weight Frequency Distributions of Copper Metal and Ore</p><p>4.4.3 Final Remarks on Application of the General Linear Model to Abitibi Copper</p><p> </p><p>5. Prediction of Occurrence of Discrete Events</p><p>5.1 Weights-of-Evidence Modeling</p><p>5.1.1 Basic Concepts and Artificial Example</p><p>5.1.2 Meguma Terrane Gold Deposits Example</p><p>5.1.3 Flowing Wells in the Greater Toronto Area</p><p>5.1.4 Variance of the Contrast and Incorporation of Missing Data</p><p>5.2 Weighted Logistic Regression</p><p>5.2.1 Meguma Terrane Gold Deposits Example</p><p>5.2.2 Comparison of Logistic Model with General Linear Model</p><p>5.2.3 Gowganda Area Gold Occurrences Example</p><p>5.2.4 Results of the Gowganda Experiments</p><p>5.2.5 Training Cells and Control Areas</p><p>5.3 Modified Weights-of-Evidence</p><p>5.3.1 East Pacific Rise Seafloor Example</p><p> </p><p>6. Autocorrelation and Geostatistics</p><p>6.1 Time Series Analysis</p><p>6.1.1 Spectral Analysis: Glacial Lake Barlow-Ojibway Example</p><p>6.1.2 Trend Elimination and Cross-Spectral Analysis</p><p>6.1.3 Stochastic Modeling </p><p>6.2 Spatial Series Analysis</p><p>6.2.1 Finite or infinite variance?</p><p>6.2.2 Correlograms and Semivariograms: Pulacayo Mine Example</p><p>6.2.3 Applications to Other Ore Deposits</p><p>6.2.4 Geometric Probability Modeling</p><p>6.2.5 Extension Variance </p><p>6.2.6 Short-Distance Nugget Effect Modeling</p><p>6.2.7 Spectral Analysis: Pulacayo Mine Example</p><p>6.2.8 KTB Copper Example</p><p>6.3 Autocorrelation of Discrete Data</p><p>6.3.1 KTB Geophysical Data Example</p><p> </p><p>7. 2D and 3D Trend Analysis</p><p>7.1 2D and 3D Polynomial Trend Analysis</p><p>7.1.1 Top of Arbuckle Formation Example</p><p>7.1.2 Mount Albert Peridotite Example</p><p>7.1.3 Whalesback Copper Mine Example</p><p>7.2 Kriging and Polynomial Trend Surfaces</p><p>7.2.1 Top of Arbuckle Formation Example</p><p>7.2.2 Matinenda Formation Example</p><p>7.2.4 Sulphur in Coal: Lingan Mine Example</p><p>7.3 Logistic Trend Surface Analysis of Discrete Data</p><p>7.4 Harmonic Trend Surface Analysis</p><p>7.4.3 Whalesback Copper Deposit Exploration Example</p><p>7.4.4 East-Central Ontario Copper and Gold Occurrence Example</p><p> </p><p>8. Statistical Analysis of Directional Features</p><p>8.1 Directed and Undirected Lines</p><p>8.1.1 Doubling the Angle</p><p>8.1.2 Bjorne Formation Paleodelta Example</p><p>8.1.3 Directed and Undirected Unit Vectors</p><p>8.2 Unit Vector Fields</p><p>8.2.1 San Stefano Quartzphyllites Example</p><p>8.2.2 Arnisdale Gneiss Example</p><p>8.2.3 TRANSALP Profile Example</p><p>8.2.4 Pustertal Tectonites Example</p><p>8.2.5 Tectonic Interpretation of Unit Vector Fields Fitted to Quartzphyllites in the Basement of the Italian Dolomites</p><p>8.2.6 Summary of Late Alpine Tectonics South of Periadriatic Lineament</p><p>8.2.7 Defereggen Schlinge Example</p><p> </p><p>9. Automated Stratigraphic Correlation, Splining and Geological Timescales</p><p>9.1 Ranking and Scaling</p><p>9.1.1 Methods of Quantitative Stratigraphy</p><p>9.1.2 Artificial Example of Ranking</p><p>9.1.3 Scaling</p><p>9.1.4 Californian Eocene Nannofossils Example</p><p>9.2 Spline-Fitting</p><p>9.2.1 Smoothing Splines</p><p>9.2.2 Irregularly Spaced Data Points</p><p>9.2.3 Tojeira Sections Correlation Example</p><p>9.3 Large-Scale Applications of Ranking and Scaling</p><p>9.3.1 Sample Size Considerations</p><p>9.3.2 Cenozoic Microfossils Example</p><p>9.4 Automated Stratigraphic Correlation</p><p>9.4.1 NW Atlantic Margin and Grand Banks Foraminifera Examples</p><p><p>9.4.2 Central Texas Cambrian Riley Formation Example</p><p>9.4.3 Cretaceous Greenland-Norway Seaway Microfossils Example</p><p>9.5 Construction of Geologic Timescales</p><p>9.5.1 Timescale History</p><p>9.5.2 Differences between GTS2012 and GTS2004</p><p>9.5.3 Splining in GTS2012</p><p>9.5.4 Treatment of Outliers</p><p>9.5.5 Early Geomathematical Procedures</p><p>9.5.6 Re-Proportioning the Relative Geologic Time Scale</p><p> </p><p>10. Fractals</p><p>10.1 Fractal Dimension Estimation</p><p>10.1.1 Earth’s Topography and Rock Unit Thickness Data</p><p>10.1.2 Chemical Element Concentration Values: Mitchell-Sulphurets Example</p><p>10.1.3 Total Metal Content of Mineral Deposits: Abitibi Lode Gold Deposit Example</p><p>10.2 Fractal Modeling of Point Patterns</p><p>10.2.1 Cluster Density Determination of Gold Deposits in the Kirkland Lake Area on the Canadian Shield</p><p>10.2.2 Cluster Density Determination of Gold Deposits in the Larger Abitibi Area</p><p>10.2.3 Worldwide Permissive Tract Examples</p><p>10.3 Geochemical Anomalies versus Background</p><p>10.3.1 Concentration-Area (C-A) Method</p><p>10.3.2 Iskut River Area Stream Sediments Example</p><p>10.4 Cascade Models</p><p>10.4.1 The Model of de Wijs</p><p>10.4.2 The Model of Turcotte</p><p>10.4.3 Computer Simulation Experiments</p><p> </p><p>11. Multifractals and Singularity Analysis</p><p>11.1 Self-Similarity</p><p>11.1.1 Witwatersrand Goldfields Example</p><p>11.1.2 Worldwide Uranium Resources</p><p>11.2 The Multifractal Spectrum</p><p>11.2.1 Method of Moments</p><p>11.2.2 Histogram Method</p><p>11.3 Multifractal Spatial Correlation</p><p>11.3.1 Pulacayo Mine Example</p><p>11.4 Multifractal Patterns of Line Segments and Points</p><p>11.4.1 Lac du Bonnet Batholith Fractures Example</p><p>11.4.2 Iskut River Map Gold Occurrences</p><p>11.5 Local Singularity Analysis</p><p>11.5.1 Gejiu Mineral District Example</p><p>11.5.2 Zhejiang Province Pb-Zn Example</p><p>11.6 Chen Algorithm</p><p>11.6.1 Pulacayo Mine Example</p><p>11.6.2 KTB Copper Example</p><p> </p><p>12. Selected Topics for Further Research</p><p>12.1 Bias and Grouped Jackknife</p><p> 12.1.1 Abitibi Volcanogenic Massive Sulphides Example</p><p>12.2 Compositional Data Analysis</p><p>12.2.1 Star Kimberlite Example</p><p>12.3 Non-Linear Process Modeling</p><p>12.3.1 The Lorentz Attractor</p><p>12.4 Three-parameter Model of de Wijs</p><p>12.4.1 Effective Number of Iterations</p><p>12.4.2 Au and As in South Saskatchewan Till Example</p><p>12.5 Other Modifications of the Model of de Wijs</p><p>12. 5.1 Random Cut Model</p><p>12.5.2 Accelerated Dispersion Model</p><p>12.6 Trends, Multifractals and White Noise</p><p>12.6.1 Computer Simulation Experiment</p><p>12.7 Universal Multifractals</p><p>12.7.1 Pulacayo Mine Example</p><p>12.8 Cell Composition Modeling</p><p>12.8.1 Permanent Frequency Distributions</p><p>12.8.2 The Probnormal Distribution</p><p>12.8.3 Bathurst Area Acidic Volcanics Example</p><p>12.8.4 Abitibi Acidic Volcanics Example</p><p><p>12.8.5 Asymmetrical Bivariate Binomial Distribution</p><p>Index</p><p> </p><p>